Role of Geometric Relaxation in Oxygen Binding to Metal Nanoparticles.

نویسندگان

  • Chun-Yaung Lu
  • Graeme Henkelman
چکیده

Better oxygen reduction catalysts are needed to improve the efficiency and lower the cost of fuel cells. Metal nanoparticles are good candidates because their catalytic properties can differ from bulk metals. Using density functional theory calculations, we studied the geometric relaxation of metal nanoparticles upon oxygen binding. Because bound oxygen species are intermediates in the oxygen reduction reaction, the binding of oxygen can be correlated to catalytic activity. Our results show that Pt and Au are unique in that they exhibit a larger structural deformation than other metals, which is pronounced for particles with fewer than 100 atoms. The structural deformation induced by atomic oxygen binding stabilizes the oxidized state and thus reduces the catalytic activity of Pt-based random alloys. We show that the catalytic activity of Pt can be improved by forming alloys with less deformable metals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...

متن کامل

Charge redistribution in core-shell nanoparticles to promote oxygen reduction.

Bimetallic core-shell nanoparticles are a class of near-surface alloy catalyst for which there is a high degree of control over size and composition. A challenge for theory is to understand the relationship between their structure and catalytic function and provide guidelines to design new catalysts that take advantage of material properties arising at the nanoscale. In this work, we use densit...

متن کامل

The role of plant antioxidants in the synthesis of metal nanoparticles

In recent years, the number of reports of nanoparticle production using green methods has increased exponentially. Green methods of nanoparticle production are based on oxidation and reduction reactions in which metal ions are reduced to nanoparticles with the help of compounds in living organisms or their extracts, including antioxidants. The presence of biomolecules, including antioxidants in...

متن کامل

Metal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction

Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...

متن کامل

ROLE OF Mn(TPP)Cl IN THE EPOXIDATION WITH SINGLET OXYGEN

Mn(TPP)Cl catalyzes cooxidation of olefin in the singlet oxygenation of sulfid. Mn(TPP)Cl is able to transfer an oxygen atom from a peroxidic intermediate generated in singlet oxygenation of sulfide to a metal ion affording metal 0x0 species which is responsible for epoxidation. This system leads to allcenes epoxidation such as styrene and cyclooctene. Epoxidation of cyclohexene produces cy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 2 11  شماره 

صفحات  -

تاریخ انتشار 2011